
TCSS 450 Final Project - SockBank

Yang(Vivian) Tang and Kevin Nguyen

July 13, 2020

Contents
1 Final Report: A Sockfull Analysis 2

1.1 Introduction . 2
1.2 Objective and Scope . 2
1.3 Other Existing Work . 2
1.4 Main Body . 2

1.4.1 Design . 2
1.4.2 Implementation . 3

1.5 An overview of the architecture . 4
1.6 Conclusions and Contributions . 5
1.7 Future Work . 5

2 Appendix A: ER Diagram 6

3 Appendix B: Normalization Proof to BCNF 7

4 Appendix C: Relational Schema Diagram 8

5 Appendix D: Screenshots of functional SQL Queries 9
5.1 Query 1 : Next Item On Sales . 9
5.2 Query 2 : Revenue Per Product . 9
5.3 Query 3 : Target Customers . 10
5.4 Query 4 : Monitor Returns . 11

6 Appendix E: Screen-shots of functional Web Interface 12

1

1 Final Report: A Sockfull Analysis
Abstract

This report discusses the design and implementation of our TCSS 445 Database System and
Design cumulative project. The task at hand was to provide a solution to a real-world problem
that could be solved using database systems. We chose to model an online store to address
the issue of people being left with only one half of a pair of socks after losing one during the
laundry. Specifically mentioned in this paper is the motivation behind the topic chosen, the
objective in mind (both personally, and for the project), and the design decisions made for our
application.

1.1 Introduction
Thanks to the advancements of technology, buying (and even selling) clothes have become more
accessible than ever. Naturally, when we were thinking of systems that could be modeled after a
database, we thought of an online retailer. It is something we are accustomed to interacting with
regularly. But we are always on the consumer side, adding content to the databases, and never on
the administrative side, managing the systems. And so the interest had led us here; to modeling our
project after an online retailer.

1.2 Objective and Scope
The objective of our project, initially, was to create a front end interface online store that exclusively
sold socks. It was hard to imagine an online store being able to solve a problem that many people
have. We realized a phenomenon that many people, if not everyone, has had once in their life:
people tend to lose one sock when doing laundry! Therefore we decided to be an online retailer
that sold socks to people, and that could sell just one sock to people that lost one half of a pair.

The scope of our project changed midway. At first, we wanted to create an online store where
customers could shop for socks. But that is boring. Going back to our initial goal of being on
the administrative side, we decided our database application will deal with the administrative team
of owning an online retailer. That is, checking stocks, managing orders, managing customers,
extrapolating which items are good sellers, and vice versa by tracking returns. In doing so, we can
generate conclusions from the data, making it a more exciting project.

1.3 Other Existing Work
Since there are countless online retailers, there are numerous other works that is similar to our
model. Although, it is our idea that is unique. To be able to purchase a single sock is unusual.

1.4 Main Body
1.4.1 Design

The database used to design the stores is similar to that of other online stores (we speculate). This
section will discuss in detail for each relation what attributes we chose to include in our design, and
what attributes we considered but decided to leave out.

2

The CUSTOMER relation includes important things about a customer, but nothing unneeded
about the customer for our purposes. What we mean is, we only store information about a customer
that is truly necessary for our applications. For example, we do not store birthday or credit card
information.Perhaps in the future, if we implemented a front end shopping interface, we would
have to store this information, but for the purposes of this project, this is enough. Especially it is
composed of an ID, Fname, Lname, Phone, email address, city, state, and postal.

The ORDERS relation consists of cust id, order id, order date, card number, and total. Here
we use the order id to uniquely identify an order and the cust id to determine whose order this is.
We store the card number in the event that we need to issue a refund to a user.

The ORDER ITEM relation is composed of item id, order id, and total. Here we track the
quantity of a specific item is purchased, and the associated order it came from. By design, an order
consists of multiple order item tuples.

The ITEM relation represents an item to be sold in our database. An item consists of item title,
item id, item title, unit price, stock, manu id, and item discount. Manu id is included to identify
which manufacturer produced this item. The other attributes are typical ones that is expected to
represent an item.

The RETURNS relation was added to include another dimension of complexity to the applica-
tion, as well as to more properly model the real world. Tuples from this relation are of the form
customer id item id, order id, qty, and total. This relation is a child of the ORDER ITEM relation.
This is to model a return in the real world, i.e. customers can return part of a purchase, and are
not required to return all items from a purchase. We keep track of the customer id so that we may
keep track of which customers return what. From this attribute and aggregate functions we can
determine for a given customer how many returns are made.

The BLACKLISTED(card number)relation represents the credit card numbers our store will not
accept. Card numbers are added to this relation because the customer using the added number has
made too many returns to the store. This is especially important because our store sells socks. It
is both unhygienic and unethical to resell used socks. For the store, having a customer make too
many returns is unprofitable, so we choose to blacklist their credit cards.

The MANUFACTURER relation was added to complete the model. It consists of an manu id,
manu name, manu phone and manu email. Manufacturers create the products that we sell; for
our model it would be useful to see which products are more profitable, and consequently which
manufacturers are more profitable.

The SHIPMENT and WAREHOUSE relations were copied from lecture. Nothing special was
added to them, but were included to provide a more complete model of the problem addressed.

1.4.2 Implementation

After we designed the database, we ran our SQL script on Oracle Live. Then, we created the
relationship schema diagram, the ER Diagram and used normalization of BCNF to make sure that
we have the appropriate design. After we satisfied our database design, we started the coding work
of the implantation of our web. We used the HTML, CSS, SQL and PHP languages to code.

Firstly, we created my Homepage using HTML and CSS. On that page, we created the Ad-
minSockBank title and added the logo image. After that, we created four statistical sums. The
administration team of SockBank is then able to keep track of total sales, total customers, total
orders and total warehouses. We want to encourage the administration team of our SockBank com-

3

pany by those numbers. Being able to see every single increase on those numbers might motivating
them and fostering working enthusiasm.

Secondly, we created the Search Customer Page, the same title, logo and navigation bar after
that we created one heading, input box and submit button. After entering the right Customer ID,
we can get customer details from the customer table. If we entered the id that is not assigned to
any customer , the web will show the Error Message that this id is not assigned to any customer.
If we enter a valid id, then we get Customer Details, and from there we also get that Customer
Order details. After getting the required data, we can go back to the homepage by clicking on the
link which we created for that purpose. Similarly, we created the Search Order page. For all the
processing work for Search Customer and Search Order, we created a different file Fuction.php
which handles all the backhand working. search customer.php is the Search Customer work file,
and searh order.php is the Search Order work file.

Thirdly, we got data from the Customer table and created the Pie Chart Customer Distribution
Chart to make our website look nice. We created the Pie Chart using the Google Chart libraries.
Fourthly, we created five buttons on our homepage, including Next Item On Sale, Revenue By Item,
Find Target Customer, Find Target Customer and Blacklist Cards. By clicking any of the buttons,
we will go to the specified page displaying the appropriate information. We created a PHP file for
each of the buttons. The queries we used for each of the buttons is in Appendix D.

Connection.php in that connection process is defined. index.php is the main homepage file.
That is the main hierarchy of our site and all the working and functionality of our site.

1.5 An overview of the architecture
The architecture of our application involves the following entities: the database, the server, the
client, and us (the business). The database type used is a MySQL database. This is because
Codeanywhere supports MySQL.

The server used is Codeanywhere Inc.s cloud IDE. We chose this rather than Microsoft Visual
Studio because we are both Mac users, with no access to Windows machines at home. But also, for
our purposes we thought Codeanywhere would be more convenient, by the name, we could code
and collaborate anywhere.

The client of our application is ourselves. In designing the project we are the store, as well as
the developers for the system. Thinking back this is a bit strange for a store of our scale, i.e. to
develop its systems in house is a trend for larger companies and corporations.

The Internet is the connection between information from our database on Codeanywheres cloud
and its front end interface. Trivially, it is the way we would sell our products, and thus it is the way
our customers would interact with the database, which would in turn affect our current front end
interface.

In sum, it is the customers who populate the database, then we as administrators will monitor
trends in the database to make informed decisions that would benefit the store. These decisions
include advertising plans, restocking of items, decreasing purchases made to a unprofitable manu-
facturer, etc.

4

1.6 Conclusions and Contributions
In conclusion, through this course we have gained hands-on experience in developing a database
system and thus a deeper understanding of how a retailers database system functions. This project
allowed us to think critically about what elements are involved in a retail management system
where we applied the ER model to each entity. We believe we completed the project to the best
of our abilities as a team of 2, but most definitely if we had a team of 3 we could have a less ugly
interface.

In the end we both think this project was completed fairly by both of us. Not all the contributions
were equal all the time though. Realistically, when one of us was too busy the other stepped up and
did more. This switch off of workload responsibility happened many times, leading to us having a
very fair work contribution in all aspects.

1.7 Future Work
This project can be continued in many ways. Most obvious is to create an online front end store
interface for customers to buy products. This way we can add additional content to the database
without manually typing in every entry into relations. This would make it easier to generate more
interesting data, where we could see obvious trends happening with the store. But also it would
make the concept of an online retailer more complete.

Yet another thing we can work on is finalizing what happens during a credit card transaction.
The first step would be to determine how transactions are carried out, which APIs are used, and
how to validate with the provided credit card credentials with the credit card issuer. Adding onto
this, we would like to learn to what extent do companies keep credit card data, and for what reason!
Or is it instead that companies connect to VISA, AMEX, DISCOVER, etc., APIs to do this.

Another possible future work would be to reinvent the front-end user interface for the project.
We would like to make it more dynamic, and flexible for real use. Specifically adding forms to the
interface so an employee of the store could manipulate the data. We both think it would be a great
(and extremely difficult) learning experience to create an interface which is up to par with industry
standards systems.

5

2 Appendix A: ER Diagram

item_id
qty

total
order_id

1

M

ORDER_ITEM

WAREHOUSE

city
warehouse_id

CUSTOMER

cust_fname

cust_lname

phone

email
cust_id

MANUFACTURER

manu_phone

manu_id

manu_email

manu_name

unit_price

item_title

item_discount stock

manu_id

item_id

warehouse_id
ship_dateorder_id

1

SHIPMENT

order_id

customer_id

qty

total

item_id

1

RETURNS

cust_id

order_id

card_number

total

order_date

CAN HAVE

M

1

1

1

ORDERS

ITEM

HAS

1

M

MAKES
1

1

IS

1

IS

1

COMPOSED_OF

1

M

COMES
FROM

IS

address
state

city postal

BLACKLIST

card_number

Figure 1: ER Diagram

6

3 Appendix B: Normalization Proof to BCNF

Figure 2: Demonstration of Boyce-Codd Normal Form

7

4 Appendix C: Relational Schema Diagram

Figure 3: Relational Schema Diagram

8

5 Appendix D: Screenshots of functional SQL Queries

5.1 Query 1 : Next Item On Sales
This query is used to choose which items should go on sale next. This is determined by a items unit
price being greater than or equal to the average price of items, and whose quantity is greater than
500. It represents items that are overly expensive and are plentiful in stock.

Figure 4: Query 1

Table 1: Result of Query 1

5.2 Query 2 : Revenue Per Product
This query is used to choose which items the store should order more of. This shows which items
produce the most income for the store, and so we should order more of that item.

Figure 5: Query 2

Table 2: Result of Query 2

9

5.3 Query 3 : Target Customers
This query will be used to determine which customers should be targeted for advertising. It repre-
sents which customers buy from the store most. In real life, this information is useful in that we
can run different ads to both loyal and lesser customers.

Figure 6: Query 3

Table 3: Result of Query 3

10

5.4 Query 4 : Monitor Returns
This query will be used to determine which customers are bad. Customers that are bad frequently
make returns. The user can use customerID to identify which cards have been used by this customer,
and then blacklist this customers cards.

Figure 7: Query 1

Table 4: Result of Query 4

11

6 Appendix E: Screen-shots of functional Web Interface

Figure 8: Homepage of SockBank

Figure 8 shows the home page of our SockBank. The home page displays general information
about SockBank and helps the administration term to make decisions. The user can click the Search
Customer to go the Search Customer page. The user is also able to Search Order page by clicking
the Search Order. The homepage displays the amount of total sales in dollar, the number of total
customers, the number of total orders and the number of total warehouses. The pie chart describes
our customer distribution. Finally, the user can click the five buttons on the bottom-right to see
more information. The results of the first 4 button are in Appendix D.

12

Figure 9: BlackList

Figure 9 shows the page when clicking Blacklist Card. The user can put a customer’s card
into blacklist by entering the customer’s card number. The user is able to go back to homepage by
clicking homepage.

Figure 10: Search Customer of SockBank

Figure 10 shows the page when clicking Search Customer. The user is able to search the
customer ’s information and orders by entering the customer’s ID and clicking Search Customer.
The user is able to go back to homepage by clicking homepage.

13

Figure 11: The Result Page of Search Customer When Enter 11000

Figure 11 shows an example output of Search Customer. In particular, Figure 11 shows the
result of search Customer When entered 11000, which is the CustomerID of Vivian.

Figure 12: Search Order of SockBank

Figure 12 shows the page when clicking Search Order. The user is able to search the Order
’s details by entering the Order’s ID and clicking Search Order. The user is able to go back to
homepage by clicking homepage.

14

	Final Report: A Sockfull Analysis
	Introduction
	Objective and Scope
	Other Existing Work
	Main Body
	Design
	Implementation

	An overview of the architecture
	Conclusions and Contributions
	Future Work

	Appendix A: ER Diagram
	Appendix B: Normalization Proof to BCNF
	Appendix C: Relational Schema Diagram
	Appendix D: Screenshots of functional SQL Queries
	Query 1 : Next Item On Sales
	Query 2 : Revenue Per Product
	Query 3 : Target Customers
	Query 4 : Monitor Returns

	Appendix E: Screen-shots of functional Web Interface

